全国服务电话:024-23251177
您的位置:首页 > 学术科研 >公共卫生与统计专题:基于时间序列模型的卫生统计数据分析与公共健康研究 以流行病传播预测、人口动态监测等为例【高中组】

公共卫生与统计专题:基于时间序列模型的卫生统计数据分析与公共健康研究 以流行病传播预测、人口动态监测等为例【高中组】

阅读 583
2024-05-27

  开始日期: 2024-07-27

  课时安排: 7周在线小组科研学习+5周不限时论文指导学习

  适合人群

  适合年级 (Grade): 高中生

  适合专业 (Major): 对数学、统计概率、生物统计、经济统计、数据科学、公共卫生数据分析等专业感兴趣的学生;

  学生必须具备统计概率等相关知识并熟练掌握R语言;

  建议选修: R语言统计分析速成

  导师介绍

  Peter

  麻省理工学院 (MIT)终身教职

Peter

  Peter 导师以优异的成绩获得哈佛大学(Harvard University)应用数学学士学位,并当选为Phi Beta Kappa Alpha Chapter的成员。后续他攻读统计学,获得了帝国理工学院(Imperial College London)的硕士学位以及加州大学伯克利分校(University of California Berkeley)的博士学位。Peter 曾任哈佛大学统计系教授,任教期间获得了美国国家科学基金会的博士后数学科学研究奖学金。随后成为麻省理工学院Sloan管理学院终身教授兼首席研究科学家,在经济和管理科学计算研究中心(CCREMS)和国际金融服务研究中心(IFSRC)进行研究。他是风险管理项目组的积极成员,并开发了纳入行业标准RiskMetrics方法论的分析方法。现为麻省理工学院数学系金融数学与统计讲师。2014年在北京交通大学全球暑期学校任教期间,被聘为计算机与信息技术学院特聘教授。

  自1992年以来,Peter 一直通过他的公司Kempthorne Analytics, Inc. 为各种机构提供金融和统计分析咨询服务。客户包括花旗银行(Citibank)、Colonial/Liberty Funds、美国运通(American Express)、巴黎国家银行(Banque Nationale de Paris)、佳能(Canon)等。主要项目包括:股票市场的资产选择建模、风险管理的统计分析、风险管理软件的设计和实现、衍生品定价的金融分析、灾难性风险分析--风险暴露建模和保险定价方案、股票市场以数据微观结构建模以及交易系统的设计、开发、实现。自1995年以来,Peter一直担任投资经理,利用先进的统计分析来管理各种投资项目,他在一家完全系统化的量化对冲基金IKOS CIF, LTD,担任投资组合经理和高级研究员。管理和增强投资组合的构建,alpha模型的评估、开发、执行分析和投资组合优化,以及期货和货币投资组合的风险建模和管理。作为高级研究员,他担任研究指导委员会主,管理和指导研究人员,并协调IKOS/牛津大学博士实习生计划。他于1995年联合创立了Chronos Asset Management,于1996年联合创立了Summa Capital Management。作为这两家投资管理公司的负责人,他运用自己专有的分析方法开发统计交易模型和交易系统,并监督交易操作。Peter导师持有Series 3和Series 65许可证,并在the National Futures Association是注册商品交易顾问。他活跃于John Bertram House Inc.(1998-2010)和Lynn Home for Young Women, Inc.(2005-2010)的董事会,曾担任两家非营利公司的财务主管,并担任监督信托资产管理的财务委员会主席。

  任职学校

  麻省理工学院(MIT)创立于1861年,是世界著名私立研究型大学,在2023年U.S.News世界大学排名中综排位列第二。学校孕育了97位诺贝尔奖得主、59位美国国家科学奖章获得者,以及75位麦克阿瑟奖获得者。

  项目背景

  时间序列是指将某种现象某一个统计指标在不同时间上的各个数值,按时间先后顺序排列而形成的序列。时间序列法是一种定量预测方法,亦称简单外延方法,在统计学中作为一种常用的预测手段被广泛应用。时间序列分析在第二次世界大战前应用于经济预测。二次大战中和战后,在军事科学、空间科学、气象预报和工业自动化等部门的应用更加广泛。时间序列分析(Time series analysis)是一种动态数据处理的统计方法。该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。时间序列构成要素是:现象所属的时间,反映现象发展水平的指标数值。

  项目介绍

  本课程将重点介绍数学模型时间序列分析的基本方法和模型及其在不同领域(公共卫生、健康、人口、生物统计)数据分析中的应用。本课程将融合计算机编程的R语言辅助统计模型在多维度的数据中的处理分析。目前,主流数学统计数据分析往往会以图形方法来进行呈现,这些可视化方法被用于大数据探索、分析模型的有效性验证和数据预测结果的展现。在本课程中,导师开发并应用了趋势和季节性的重要时间序列模型,包括经典分解和多级指数平滑模型。同时导师将利用真实世界的时间序列数据(包括美国联邦储备局、世界银行和政府机构公卫数据)对本课程中涵盖的统计概率方法进行分析和实践应用。

  项目大纲

  时间序列分析导论 Graphing Time Series

  数据预测工具 Tools of Forecasting

  预估噪声序列的时间序列相关性检验固定的流程 Testing estimated noise sequences for time series dependence; stationary processes

  时间序列分解研究 Decomposing Time Series

  季节性模型、平滑模型和趋势模型;模型选择和应用 Exponential Smoothing

  学术研讨1 Final Project Phase I

  学术研讨1 Final Project Phase II

  项目回顾和成果展示 Program Review and Presentation

  论文辅导Project Deliverables Tutoring

  项目收获

  7周在线小组科研学习+5周不限时论文指导学习 共125课时

  项目报告

  优秀学员获主导师Reference Letter

  EI/CPCI/Scopus/ProQuest/Crossref/EBSCO或同等级别索引国际会议全文投递与发表指导(可用于申请)

  结业证书

  成绩单

留学也是一种投资,你的留学预算充足吗,简单3步,轻松了解留学预算?

费用计算

版权及免责声明:
1、如转载本网原创文章,请务必注明出处:寰兴留学(www.huanxingedu.com);
2、本网转载媒体稿件、图片旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;如转载稿、图片涉及版权等问题,请作者在两周内速来电或来函联系,我们将立即删除。

全国统一服务热线
024-23251177
服务邮箱:ben@sas-ben.com
投诉邮箱:ben@sas-ben.com