开始日期: 2024-06-29
课时安排: 7周在线小组科研学习+5周不限时论文指导学习
适合人群
适合年级 (Grade): 大学生及以上
适合专业 (Major): 对机械工程、流体力学、数值模拟与分析、车辆工程、航空航天工程等相关专业感兴趣的学生。
学生需要具备多元微积分和线性代数基础, 以及Python基础。
导师介绍
Shlomo
卡内基梅隆大学 (CMU)终身正教授
Shlomo教授任卡内基梅隆大学(CMU)终身正教授,他曾在魏茨曼科学研究所(Weizmann Institute of Science)攻读博士学位。之后移居美国,并在位于美国宇航局兰利研究中心的ICASE(科学与工程计算机应用研究所)工作。教授从1994年任职于卡内基梅隆大学,研究方向包括解决流体动力学方程和处理大规模优化的相关问题。
Professor Shlomo worked at ICASE (Institute for Computer Application in Science and Engineering), which was at NASA Langley Research Center. The instructor was a senior scientist at the Weizmann Institute for a few years. From 1994, Shlomo became a Professor at Carnegie Mellon University. His research interests include solving fluid dynamics equations and dealing with large-scale optimization related problems.
任职学校
卡内基梅隆大学(CMU)始建于1900年,是世界范围内颇负盛名的私立研究型大学,拥有世界历史最悠久的计算机学院之一,在2020年QS世界大学计算机科学排名中位列第3,2020年U.S.News计算机科学美国排名第二位。“截至2019年3月,学校的教员和校友中共有20人获得诺贝尔奖,13人获得图灵奖,22人获评美国艺术与科学院院士,19人进入美国科学促进会,72人入选美国国家学院。”
项目背景
超临界翼型于1967年由NASA兰利研究中心的惠特科姆博士提出,它是一种适用于高亚声速飞机的中等厚度翼型,它同时具备优异的高速特性和良好的低速特性。与高速普通翼型相比,超临界翼型能够把阻力发散马赫数提高大约0.05-0.12,或者把翼型的最大相对厚度提高2%-5%。 随后流体力学在机械工程、化学工程、土木工程、生物工程、环境工程、航空航天工程、海洋工程、石油工程、能源工程领域中的应用受到了人们的广泛关注,也成为了解决全球变暖、淡水供应和新能源问题的幕后功臣,被各国政府列入可持续发展白皮书。近年来,特别是由于流体力学和数理分析的融合,流体工程得到了快速地发展,在汽车制造领域,借助流体力学可以优化车身的设计,降低车身的空气阻力,提高燃油的经济性,在航空航天领域,指导机翼的设计等。The supercritical airfoil was proposed in 1967 by Dr. Whitcomb at NASA Langley Research Center as a medium-thickness airfoil for high subsonic aircraft that has both excellent high-speed characteristics and good low-speed characteristics. The supercritical airfoil is capable of increasing the drag divergence Mach number by approximately 0.05-0.12, or increasing the maximum relative thickness of the airfoil by 2%-5%, compared to a high-speed normal airfoil. Subsequently, the application of fluid mechanics in the fields of mechanical engineering, chemical engineering, civil engineering, biological engineering, environmental engineering, aerospace engineering, marine engineering, petroleum engineering, and energy engineering has received widespread attention, and has also become a behind-the-scenes solution to the problems of global warming, fresh water supply, and new energy sources, and has been included in the white paper on sustainable development by various governments. In recent years, especially due to the integration of fluid mechanics and mathematical analysis, fluid engineering has been developed rapidly. In the field of automobile manufacturing, with the help of fluid mechanics, the design of the body can be optimized to reduce the air resistance of the body and improve the fuel economy, and in the field of aerospace, the design of the wing is guided, etc.
项目介绍
本项目将采用流体动力学通用的积分和微分方程讨论流体动力学中的经典问题,而后项目将逐步深入并着重于在可压缩及不可压缩情况,时间无关问题方程的分别对应的数值解,分析势方程的守恒形式及边界条件,小扰动近似理论,跨声速流,超音速离散化及边界条件。学生将在导师的指导下以科学的方法记录并且分析研究结果,在项目结束时提交项目报告,进行成果展示。
个性化研究课题参考:
航天飞机跨声速机翼绕流气动特性分析
流体力学指引下的汽车空气阻力探究及车型设计原理
气固流化床内两相流动特性的数值模拟及结构优化设计
流体力学补偿标准伽辽金有限元及其在建筑风场中的应用
This project will use the general integral and differential equations of fluid dynamics to discuss classic problems in fluid dynamics. Then the project will gradually deepen and focus on the corresponding numerical solutions of the time-independent problem equations in the compressible and incompressible situations, analysis of the conservation form and boundary conditions of the potential equation, small disturbance approximation theory, transonic flow, supersonic discretization And boundary conditions. Under the guidance of the instructor, students will record and analyze the research results in a scientific way, submit a project report at the end of the project, and display the results.
Suggested Future Research Fields:
Analysis of aerodynamic characteristics of space shuttle transonic wing flow around
Research on automobile air resistance and car model design principles under the guidance of fluid mechanics
Numerical simulation and structural optimization design of two-phase flow characteristics in a gas-solid fluidized bed
Galerkin finite element standard for fluid mechanics compensation and its application in building wind farms
项目大纲
流体动力学基本方程 The basic equations of fluid dynamics
势方程的守恒形式及边界条件,小扰动近似理论(SDA) Conservation form of the potential equation. Boundary conditions and small disturbance approximation (SDA)
亚音速势方程与边界条件的离散化及其SDA简化模型 Discretization of the subsonic potential equation and boundary conditions. Simplified models using SDA
跨声速流 Transonic flows
超音速离散化及边界条件 Discretization of the supersonic case. Boundary conditions
项目回顾与成果展示 Program review and presentation
论文辅导 Project deliverable tutoring
项目收获
7周在线小组科研学习+5周不限时论文指导学习 共125课时
项目报告
优秀学员获主导师Reference Letter
EI/CPCI/Scopus/ProQuest/Crossref/EBSCO或同等级别索引国际会议全文投递与发表指导(可用于申请)
结业证书
成绩单
留学也是一种投资,你的留学预算充足吗,简单3步,轻松了解留学预算?
费用计算
版权及免责声明:
1、如转载本网原创文章,请务必注明出处:寰兴留学(www.huanxingedu.com);
2、本网转载媒体稿件、图片旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;如转载稿、图片涉及版权等问题,请作者在两周内速来电或来函联系,我们将立即删除。